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Accurate Determination of Magnetic Field Gradients 
from Four Point Vector Measurements-Part I: 

Use of Natural Constraints on Vector Data 
Obtained From a Single Spinning Spacecraft 

Emil L. Kepko, Krishan K. Khurana, Margaret G. Kivelson, Richard C. Elphic, and Christopher T. Russell 

Abstract-Cluster introduces a new generation of spacecraft 
that will measure the spatial gradients of the magnetic field in 
the Earth’s magnetosphere. As gradients require knowledge of 
differences, small errors resulting from an inadequate knowl- 
edge of the orientations, zero levels and the scale factors of the 
magnetometer sensors affect the calculation of field gradients 
disproportionately and must be removed with high accuracy. 
We show that twelve calibration parameters are required for 
each of the spacecraft (for a total of 48 for the four spacecraft) 
to correctly infer the measured magnetic fields at each of the 
spacecraft. 

By application of a Fourier transform technique, some of the 
parameters can be recovered. We will show that errors in eight 
of the twelve calibration parameters generate coherent mono- 
chromatic signals at the first and the second harmonics of the 
spin frequency in the despun data. These narrow-band signals 
can be readily characterized because of the natural constraint 
that low frequency geophysical signals in the Earth’s magne- 
tosphere have a broad-band character. We relate the real and 
the imaginary parts of the monochromatic signals to the eight 
calibration parameters. We then present a least squares scheme 
that improves the eight calibration parameters by iteration un- 
til the power of the coherent signal superimposed above the 
broad-band background is minimized. In an accompanying pa- 
per, we report on another technique that determines the rest 
of the calibration parameters by utilizing the natural con- 
straints that V * B is zero everywhere and V X B is vanishingly 
small in certain regions of the magnetosphere. 

I. INTRODUCTION 
PRINCIPAL objective of the multispacecraft mis- A sion Cluster is the direct measurement of the spatial 

gradients of the magnetic field throughout the magneto- 
sphere [ 11, [2]. The measurement accuracy needed to un- 
derstand physical processes operating in the Earth’s mag- 
netosphere places very stringent requirements on the 
reliability of the measured magnetic field. The first-dif- 
ferences (the differences in the values of a field compo- 
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nent measured at two locations) are typically very small 
compared to the background field. Errors arise from un- 
certainty in the absolute orientations of the sensors (mis- 
orientation), the offsets (misleveling), and the sensor gains 
(improper scaling); these uncertainities are often compa- 
rable in size with the first-order differences. For example, 
if a sensor assembly on a spacecraft is misaligned by an 
angle Aa with respect to the sensor assemblies on another 
spacecraft, the resulting error in V X B can be as large as 
Bo sin A d d ,  where Bo is the value of the background field 
and d is the spacecraft spacing. Thus, for an average 
spacecraft spacing of 1000 km, a misalignment between 
two different sensor assemblies by one degree can result 
in an error of as much as 2.2 nTIRE in V X B in a back- 
ground field of 20 nT. If the separation between the 
spacecraft were 500 km, the peak error in V X B could 
be as large as 4.4 nTIRE. For reference, the peak values 
of V x B in the Earth’s current sheet in the magnetotail 
near X = - 15 RE are of order 15 nTIRE. 

The calibration of a single, near-orthogonal sensor triad 
requires the determination of twelve quantities. These 
could be thought of as the nine elements of a coupling 
matrix (C) that orthogonalizes, scales and correctly ori- 
ents the sensor data and the three offsets (0) that correct 
for the zero levels of the sensors. Thus, 

In this and an accompanying paper [3], we introduce new 
techniques to fully correct or compensate for all of the 48 
calibration parameters. In this work, we develop a Fourier 
transformed-based technique to recover eight of the twelve 
calibration parameters for each of the spacecraft by using 
the natural constraint that low-frequency geophysical sig- 
nals in the Earth’s magnetosphere have a broad-band 
character. In the accompanying paper [3], we report on 
another technique that determines the rest of the calibra- 
tion parameters by utilizing the natural constraints that 
V * B is zero everywhere and V x B is vanishingly small 
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TABLE I 
SUMMARY OF THE COORDINATE SYSTEMS USED IN THIS PAPER 

notation coordinate system 

X, Y,  2 
X', Y', 2' 

Despun spacecraft coordinate system (orthogonal) 

Despun pseudo-spacecraft coordinate system (non-orthogonal) 

x, y,  z 

S, , S, , S, 

Spinning spacecraft coordinate system (orthogonal) 

Spinning sensor Coordinate system (non - orthogonal) 

in certain regions of the magnetosphere. Results of cali- 
brations performed on data obtained from the ISEE mis- 
sion are also presented. 

11. COORDINATE SYSTEMS 
In our papers, we will have occasion to express the vec- 

tor magnetic field in four different coordinate systems. We 
begin with the orthogonal spinning spacecraft coordinate 
system (x, y ,  z )  which rotates with the spacecraft. The 
z-axis of this coordinate system is parallel to the spin axis 
of the spacecraft, and the x- and y-axes lie in the spin 
plane of the spacecraft with y-axis leading the x-axis by 
90" in the direction of rotation. The three sensors S1, S2, 
and S3 point roughly along the x, y, and z directions of 
the spacecraft, respectively. The sensor coordinate sys- 
tem (Sl, S,, S,) spins with the spacecraft, but because of 
individual sensor misalignments is not necessarily an or- 
thogonal coordinate system. The actual measurements on- 
board the spacecraft are made in this coordinate system. 
By applying a despin matrix, the data from the two rotat- 
ing coordinate systems can be transformed into two de- 
spun coordinate systems: one orthogonal and the other 
nonorthogonal . The orthogonal despun spacecraft coor- 
dinate system is denoted by ( X ,  Y, Z ) ,  whereas the despun 
nonorthogonal coordinate system (called the despun pseu- 
dospacecraft coordinate system) is denoted by ( X ' ,  Y ' ,  
2') .  Table I provides a summary of the four coordinate 
systems. 

111. BASIC EQUATIONS 
A vector pointed along a sensor S can be related to the 

three orthogonal components directed along the spinning 
spacecraft coordinates (x, y ,  z) through the relation 

Bs = B, sin8 cosp + By sin8 sinp + B, cos8 (2) 

where 8 is the elevation angle of the sensor with respect 
to the z-axis and p is the azimuthal angle the projection 
of the sensor makes with the x-axis in the x-y plane. 

The measurements made by the sensors may also have 
small offsets because of the magnetic fields generated by 
the spacecraft subsystems, or because the zero levels of 
the sensors have drifted over time. The gain factors of the 
sensors may also have changed since the ground calibra- 
tions because of aging. Thus, the measurements provided 

by the sensors are related to the actual background field 
in spacecraft coordinates through 

Equation (3) can be rearranged so that only the sensor 
measurements appear on the left-hand side of the equation 

/G1 sine, cospl G1 sinel sinp1 GI cosO1\ \ 
I Bsz = 1 G2 sin02 cosp, G2 sine2 sinp2 G2 cos8, ] 
\ B ~ ~ /  \G3 sine3 COSCp3 G3 sine, sinp3 G3 cos83/ 

(4) 

The matrix on the right-hand side of the equation is often 
called the orthogonality matrix because it contains infor- 
mation on the orthogonality of the sensors. For a perfectly 
calibrated sensor triad, the orthogonality matrix would re- 
duce to a unitary matrix. The coupling matrix of equation 
(1) is the inverse of the orthogonality matrix. 

As the actual background field (Bx, By, B,) is not known, 
(4) cannot be solved by using the standard matrix inver- 
sion schemes. However, we will show below that if the 
raw sensor data (Bs,, B,,, BsJ are transformed into an in- 
ertial frame by applying a despin matrix, the resulting data 
possess coherent monochromatic signals at the first and 
the second harmonics of the spin frequency of the space- 
craft. The calibration parameters can be related to the first 
and second harmonics through a set of linearized equa- 
tions which can then be solved to obtain some of the cal- 
ibration parameters. 

Equation (4) can be simplified by measuring the ele- 
vation and azimuthal angles of the sensors with respect to 
the nearest spacecraft coordinate axis, that is, 

8, = 90 - A01 02 = 90 - A82 

P1 = APl ~2 = 90 + b 2  ~3 = ~3 (5) 

63 = A03 

where the elevation angles A81 and A82 are measured from 
the x-y plane, A83 is measured with respect to the z-axis, 
A p l  and p3 are measured from the x-axis, and Ap2 is mea- 
sured from the y-axis. Notice that with the exception of 
p3, all of the angles are expected to be small. Thus, we 
use the small angle approximation cos ACY = 1 and sin 

" 
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(3) + (3) 
The gain factors in the above equation are numbers close 
to unity. We further use the simplification that 

G2 = G1 + AGZ, 

AP2 = 4 1  + &21. (7) 

Notice that ApZl = Ap2 - A p l  = 90" - (p2 - pl) is a 
measure of the nonorthogonality of the spin plane sen- 
sors, and AG2 is a measure of the nonequality of their 
gains. The implications of substitutions (7) will become 
apparent later in the work. Ignoring second-order terms, 
we get 

A similar linearized form for the relationship between the 
sensor fields and the background field, omitting effect of 
incorrect gain factors, was obtained by Farrell et al. [4]. 

The data in the spinning spacecraft coordinate system 
and the despun spacecraft coordinate system are related 
by 

By = -BH sin(wt - $) 

B, Bz (9) 

where BH = -y is the magnitude of the field in the 
X-Yplane, and $ = tan-'(By/Bx) is the angle that the pro- 
jection of the magnetic field in the spin plane makes with 
the X-axis. By multiplying both sides of (8) with the de- 
spin matrix 

D = sinwt C O S W ~  (10) 

we get 

Bx, = G,B,(cosrl/ + Ap2 sin$) 

BH 
2 

G, - (AGiI cos$ - Ap2 sin$) 

coswtGl(B,AOl + 0;) 

sinwtG, ( - BzA02 - 0;) 

BH cos2wtG1 - (-AGi1 cos$ - Acp2, sin$) 
2 

BH 
2 

sin2wtG1 - (-AGil sin$ + Ap21 cos$) 

B, = G,B,(sin$ - Ap2 cos$) 

BH + G1 - (AGil sin$ + Ap2 cos$) 
2 

+ coswtG1(BZAOz + 04) 
+ sinwtG1(B,AO1 + Oi) 

+ cos20tGl - (AGil sin$ - Apzl cos$) 

+ sin2wtG1 - (-AG;l cos$ - Apzl sin$) 

BH 

BH 

2 

2 

(1 1b) 

Bz, = G3(Bz + 0;) 

+ coswtG3BH(cosp3A03 cos$ + sinp3A03 sin$) 

+ sinwtG3BH( - sinp3A03 cos$ + cosp3A0 sin$) 

(1lc) 

where we have defined 

(12) 

Equation (1la)-(llc) form the basis of the calibration 
procedure. They relate the errors in calibration parame- 
ters to the coherent monochromatic signals in the despun 
data at the first and the second harmonics of the spin fre- 
quency of the spacecraft. From these equations, we learn 
that the elevation of SI and S,  out of the spin plane (AO, 
and AOz) and the offsets 0, and O2 in the spin plane sen- 
sors produce first harmonic signatures in Bxl and By 
(through their association with the sinwt and cosat terms). 
The nonorthogonality of the spin plane sensors (Apzl) and 
the mismatch of the gains (AGzl) generate signals at the 
second harmonic in Bx, and By,. We also learn that the 
elevation (AO,) of the spin axis sensor from the z-axis gen- 
erates a first harmonic in Bzt. Finally, we learn that three 
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of the calibration parameters (G3, pl,  0,) are not associ- 
ated either with the first or the second harmonic terms, 
and thus do not produce coherent spin-related signals in 
the despun data. The calibration parameter G1 does ap- 
pear in association with first and second harmonic terms, 
but always occurs in association with other calibration pa- 
rameters. These four parameters cannot be determined by 
methods that relate to the power in the spin tones. From 
now on, we will assume that fairly reliable values of these 
four parameters are available from ground calibrations. In 
an accompanying paper, we will describe how these pa- 
rameters can be refined further. 

By Fourier transforming both sides of (1la)-(llc) 
through the relation 

F(u)  = UT f(t)e-'"'dt (13) !ioT 
we resolve the three time series into their Fourier com- 
ponents 

B,,(w = 0) = BHG, COS$ 

B H  + - Gl(AGiI cos$ + Ap2, sin$) 2 

(14a) 

BH = GI - (-AGil sin4 + A'p21 cos$) (14e) 2 

BH BY(a = 0) = BHG1 sin$ + - 
2 

- Gl(AGiI sin$ - Acp21 cos$) 

@ ( B ~ ( w  = U,)} = G1(BzA62 + 0;) 

3{By,(~ = U,)] = G,(B,AOI + 0;) 

@{BY,(@ = 2%p)}  

BH 
2 

= GI - (AGil sin$ - Ap21 cos$) 

3{BY'(U = 2 W S P ) 3  

BH = GI - (-AG;, cos$ - Ap21 sin$) 
2 

B ~ , ( w  = 0) = G3(BZ + 0;) 

@ P Z b  = w,)] 

3(Bz,(U = U,>l 
= G3BH(cosp3A83 cos4 + sinp3A03 sin$) (16b) 

= G3BH(-cosp3A03 sin$ + sincp3A03 cos$) (16c) 
where we have assumed that BH and $ (and therefore B, 
and By) are constant for the time duration (typically a few 
minutes) over which the Fourier transform was per- 
formed. In general, this condition is not fully met and, as 
a result, a background level power is present at all fre- 
quencies, superimposed on the three frequencies (0,  U ,  

and 20) we are most interested in. We will discuss below 
how this background can be dealt with. Equations (14)- 
(16) express the relationships between the calibration pa- 
rameters and the real and imaginary parts of the zero, first 
and second spin harmonics present in the despun magnetic 
vectors. In the next section, we discuss how this near- 
linear system of equations can be inverted for the calibra- 
tion parameters. 

IV. LEAST SQUARES INVERSION 
A closer examination of the above 13 equations shows 

that they can be conveniently assembled into five groups. 
The first group consists of (14a), (15a) , and (16a) which 
can be rewritten as 

B ~ , ( w  = 0) = GlBH CUS$ + AB, 

BY(w = 0) = GlBHsin$ + ABy 

B,!(U = 0) = G,(Bz + 0;). 

( 174 

(17b) 

(17c) 
Noting that B, = BH COS$ and By = BH sin$, and ignoring 
small contributions from the first-order quantities, we find 
that the three zeroth-order harmonics yield estimates of 
the average field in the X ,  Y,  and 2 directions. The esti- 
mates of B,, By, and BZ are needed in solving other equa- 
tions. 

The second group of equations comprises (14b) and 
(15c) which can be rewritten in the form 

(18) U = B7ABI -k 0; - -  
(15a) 

(15b) 
where the dependent variable U is a super set of the quan- 
tities @(Bx,(w = w,))/G1 and 3{By<(u = wxp)}/Gl, and 
the independent vanable B, is obtained from (17c) under 
the assumption that G3 and 0; are known from ground 
calibrations. The least squares solution of this set of equa- 
tions is obtained from normal equations derived by min- 
imizing the rms difference between the two sides of (18). 
We would like to point out that the inversion at this stage 
does not yield the best estimates of AO, and 0; because 
nonlinear terms for calibration parameters were neglected 
in deriving the final equations. We therefore improve upon 
the estimates of these calibration parameters by adopting 
an iterative approach. After all of the calibration param- 
eters have been obtained, we use the exact nonlinear form 

(15d) 

(15e) 

(16a) 
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TABLE I1 
CALIBRATION PARAMETERS DETERMINED FOR THE ISEE-2 SENSOR 

ASSEMBLY BY USING THE FOURIER TRANSFORM TECHNIQUE 

A81 A82 A83 A921 AG21 cp3 01 02 

-1.41" -0.39' 1.38' 1.05' -0.012 -1.44" 0.12nT 0.11 nT 

of the orthogonality matrix in (4) to calculate the coupling 
matrix of (1). The coupling matrix is then applied to the 
sensor data, and these corrected data become the input for 
the second iteration. The corrections to the calibration pa- 
rameters obtained from the second iteration are added to 
the values of the parameters obtained from the first iter- 
ation. This iterative procedure is repeated until no im- 
provements are obtained in the calibration parameters 
(typically 4 to 5 steps). 

The third group of equations comprises (14c) and (15b) 
which can be combined into 

Equation (19) can be solved for A02 and 0; in a manner 
similar to (1 8). 

The fourth group of equations comprises (14d), (14e), 
(15d), and (15e) which can be rewritten in the form 

where 

w, = 

w, = 

w3 = 

w, = 

The above set of equations can be solved by performing 
a multivariate least squares inversion. We once again use 
the iterative procedure outlined above to further improve 
the parameter estimates. 

Finally, the fifth group of equations comprises (16b) 
and (16c). In solving this set of equations, one must re- 
member that p3 appears only in combination with A03 as 
cosp3A03 and sincp3A03. These quantities are small and 
can be solved for iteratively as above. Then, AO, and (p3 

are calculated from cosp3A03 and sinp3A03. Thus, equa- 
tions (16b) and (16c) are collected into 

Pj=1,2 = cosp3A03yj + s i n ~ ~ A O ~ 6 ~  (21) 

BEE2 Uncaiibrated Data 
35 

"1 
-311 I 

I 871 ' 

85 , I 

08 47 00 08 47 20 08 47 40 08 48 00 

Time (hh mm ss) September 5, 1978 
Fig. 1 .  A segment of the despnn uncalibrated magnetic data collected by 

the ISEE-2 spacecraft in the inner magnetosphere. 

where 

y1 = cos$, 6 ,  = sin$ 

P2 = ~{Bz,(w = U,))/(G~BH), 

y2 = -sin$, 6, = cos$. (22) 

Equation (21) can be solved in the same way as (20). 

V. A TEST OF THE TECHNIQUE 
We have successfully applied the technique on mag- 

netometer data obtained from the ISEE 1 and 2 and the 
Galileo spacecraft. The technique has proven to be ex- 
tremely robust because the coherent nature of the first and 
second spin harmonics allows us to distinguish them eas- 
ily from the mainly low-coherence background produced 
by geophysical signals. In this section, we present results 
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ISEE2 Calibrated Data 
35 

33 4 

25 27i 95, 

834 

79j 1 
08:4700 08:4720 08:47:40 08:48:00 

September 5, 1978 Time (hh:mm:ss) 

Fig. 2. The same segment of data after calibration. Notice that the spin 
harmonics in all three of the components have been reduced to the back- 
ground level of the noise. 

from a calibration performed on an ISEE 2 data set from 
September 5 ,  1978. The data were obtained from an in- 
bound pass when the spacecraft was in the inner magne- 
tosphere and measured a large range of magnetic field val- 
ues. We used fourteen datasets, each approximately of 
three minutes duration. We used the discrete Fourier 
transform (DFT) technique to calculate the Fourier trans- 
form because, unlike the FFT, it allows us to perform the 
integration over an integral number of spin cycles so that 
the estimates of the real and imaginary parts of the spin 
harmonics can be obtained very accurately. The calibra- 
tion required less than a minute of CPU time on a Sun 
SparcStation 20. The calibration parameters obtained from 
the calibration are listed in Table 11. In order to show how 
well the technique removes the first and second harmonic 
signals from the despun data, we show a segment of the 
despun uncalibrated data in Fig. 1 and the same segment 
after calibration in Fig. 2. The calibrated data do not con- 
tain any enhanced power at spin harmonics. The dynamic 
spectra of the three components obtained from the uncal- 
ibrated despun data clearly show large first and second 
harmonics in the spin plane components and a large first 
harmonic in the spin axis component (Fig. 3). The values 
of the spin harmonics in the dynamic spectra of the cali- 
brated despun data are near the background levels (Fig. 
4). 

VI. DISCUSSION 
Our experience with the above technique has shown 

that, under ideal conditions, the elevation and mutual an- 
gles can be calculated with a precision of better than 0.01 
degree. The two spin plane offsets can be obtained with a 
precision of better than 0.05 nT, and the mutual gain mis- 
match between sensors 1 and 2 can be obtained with an 
accuracy of better than 0.1 %. Even under adverse con- 
ditions, the angles can be calculated with a precision of 
better than 0.1 degree routinely. The main prerequisites 
for obtaining a good calibration are: 1) among them, the 
data segments should cover a large range of magnetic field 
values (equations (14)-( 16) show that the amplitudes of 
the three components of the magnetic field modulate the 
amplitudes of the spin harmonics); 2) the background 
noise in the data sets should be small so that the spin har- 
monics can be distinguished from the background easily; 
and 3) the calibration parameters being calculated should 
have remained constant during the time when the calibra- 
tion data were collected. All three conditions are easily 
met by the data collected by fluxgate mangetometers in 
the Earth’s magnetosphere. 
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Amplitude (€3,) 

I - -  r- I 
8:15 8:45 9:15 

Amplitude (By) 

I I 

8:15 8:45 9: 15 

Amplitude (Bz) 
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September 5,1978 
Fig. 3 .  The dynamic spectra of the uncalibrated data shows the presence of large signals at the first and second spin harmonics 

in the spin plane components (B,  and E,) and the first harmonic in the spin axis component (Ez ) .  
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September 5, 1975 
Fig. 4. The dynamic spectra of the calibrated data 
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